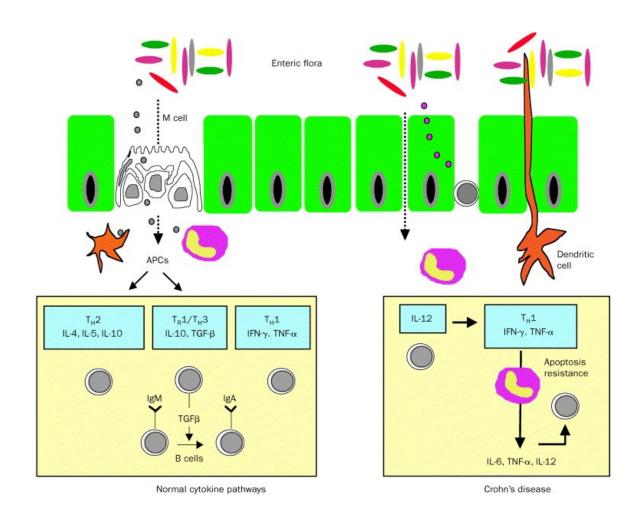

# The Genetic Basis of Crohn's Disease

Suzi Alvarez

#### What is Crohn's Disease?


- A form of Inflammatory Bowel Disease involving chronic inflammation of the intestinal tract
  - Crohn's: anywhere, deepest layers of the lining, discontinuous
  - Ulcerative Colitis: colon and rectum, inner lining, continuous
- Usual onset 15-35 years
- Prevalent in U.S. and western Europe
  - 200 / 100,000, 1 million Americans



#### • What causes Crohn's?

- Genetic predisposition, environmental factors and immune-mediated tissue injury
- Abnormal mucosal immune reaction regulated by T-lymphocytes to certain enteric bacteria present in the intestines
- Epithelial cells sense bacteria type. TH1 for dangerous, TH2 & TH3 for acceptable
- With Crohn's, only TH1 cytokines such as TNF are used
- Apoptosis resistance → Unrestrained TH1 generates activated matrix metalloproteinases causing tissue destruction

#### Normal vs. Crohn's Pathway

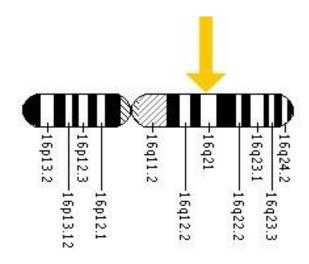


- Symptoms
   Abdominal pain, Diarrhea, Fever, Weight loss, Bleeding
  - Complications due to symptoms:
    - Strictures  $\rightarrow$  obstruction
    - Fistulas
    - Anemia
    - Perforation
  - "Flare-ups" followed by periods of being healthy
  - Perforating vs. Non-perforating
    - Abcesses/free perforation vs. blockage/bleeding

## • • Diagnosis

- Physical examination of abdomen
- Barium Small Bowel Follow-through
- Colonoscopy
- Endoscopy
- Blood work:
  - Albumin, c-reactive protein, sedementation rate, white count, hemoglobin

#### Treatment

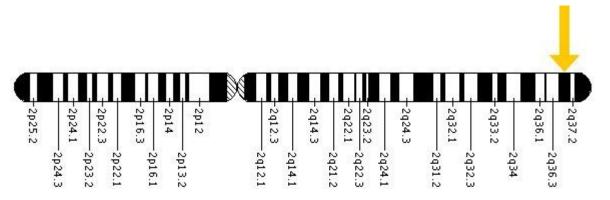

- Aminosalicylates (5-ASAs)
- Immunosuppressives: specific
- Corticosteroids: nonspecific
- Anti-TNF: tumor necrosis factor
- Surgery: bowel resection, anastamosis
- O Diet: Low fiber, low residue, Low lactose
- No cure ... yet! Genetic research is getting us closer

### THE GENES: NOD2

- Located on Chromosome 16
- Makes a protein called nucleotide-binding oligomerization domain containing 2: involved in immune response and epithelial cells in lining
- NOD2 creates nuclear factor-kappa-B attack "bad" bacteria
- 30+ NOD2 variations are associated with Crohns's (protein is slightly shorter, one amino acid missing)

### • • More NOD2

- Studies suggest changes in NOD2 allow bad bacteria to invade the lining
- An abnormal immune response to this bacteria could cause inflammation

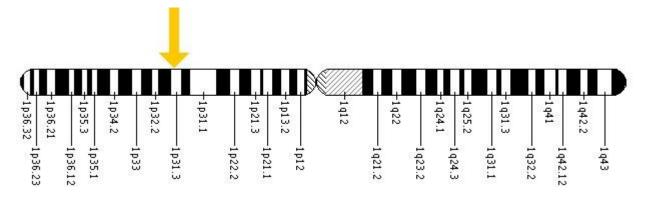



### • • THE GENES: ATG16L1

- Located on Chromosome 2
- Makes a protein called ATG16 autophagy related 16-like 1
  - A family of proteins responsible for autophagy – destroying old cell parts and proteins
  - Important in cell death and immune destruction of viruses and bacteria

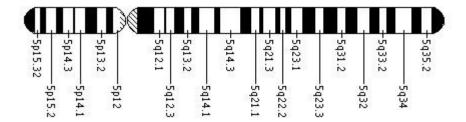
#### More on ATG16L1

- One variation associated with CD: replacement of the amino acid threonine with alanine
- If worn-out cell parts an bacteria that should be destroyed stay, it could cause abnormal immune response




### • • THE GENES: IL23R

- Located on chromosome 1
- a protein called the interleukin 23 receptor on surface of immune cells
  - T-Cells, Natural Killer cells, Dendritic
- Protein protrudes out of cell and binds with interluekin 23 (cytokine, immune regulator), this causes inflammation
- Many variations of IL23R associated


#### More on IL23R

- One change appears to *reduce* the likelihood of developing Crohn's
  - replacing the amino acid arginine with glutamine
  - Unclear how this works, but receptor's ability to trigger inflammation in intestinal walls shows its connection



# Chromosomes 5 & 10 IBD Locus on long arm of 5 (5q31)

- "Gene desert" on short arm (5p13.1), nearby gene PTGER4
  - T-cell signaling and skin immune response



• Gene desert on 10 (10q21.1), may affect nearby gene ERG2: immune response

| 1        |           |                        |           |          |          | П         | Ш         |           |         |
|----------|-----------|------------------------|-----------|----------|----------|-----------|-----------|-----------|---------|
| 10p15.2  | -10p12.33 | -10p12.1               | -10q11.22 | -10q21.3 | -10q23.1 | -10q23.33 | -10q24.32 | -10q25.3  | 10q26.2 |
| -1 Up 14 | 10011     | -10p11.22<br>-10p13 31 |           | -10021.1 | -10q22.2 | -1000331  | -10g24.2  | -10426.12 |         |

## • • Implications

- Current medications treat only the symptoms and involve a great deal of trial and error
- Genetic research has the potential to improve therapy as well as provide early detection and a cure

#### Sources

- Shanahan, Fergus MD. "Crohn's Disease." The Lancet 359 (2002): 62-69
- OMIM:<a href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=266600">http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=266600</a>
- Entrez Gene: <a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list\_uids=5734">http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list\_uids=5734</a>
- Stone, Christian MD. <u>MedlinePlus Medical Encyclopedia: Crohn's Disease</u>. 20 Feb. 2008. A.D.A.M., Inc.
- <a href="http://www.nlm.nih.gov/medlineplus/ency/article/000249.htm">http://www.nlm.nih.gov/medlineplus/ency/article/000249.htm</a>
- <u>Centre for Digestive</u> Diseases. 2003
- <a href="http://www.cdd.com.au/html/expertise/diseaseinfo/crohns.html">http://www.cdd.com.au/html/expertise/diseaseinfo/crohns.html</a>
- Genetic Home Reference. "Crohn's Disease." 30 May. 2008. U.S. National Library of Medicine.
- <a href="http://ghr.nlm.nih.gov/condition=crohndisease">http://ghr.nlm.nih.gov/condition=crohndisease</a>