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Probabilistic Approaches to Predicting the Secondary Structure of Proteins

Today’s increasingly unaffordable medical treatment forces genomic

research to have far-reaching consequences.  Most members of the public do not

realize that the genetic sequence does not only encode information about

hereditary make-up, but that it also contains the necessary blueprints for the

structural formation of essential proteins.  As the central dogma of molecular

biology declares, DNA is transcribed into RNA, which is then translated into

amino acids that make up proteins.  Malfunctions in these proteins result in

phenotypes that may be classified as diseases.  As health care functions today,

doctors assess symptoms, resulting in a diagnosis for a disease.  Physicians must

make educated guesses based upon the symptoms and run a series of tests, the

process of which may sometimes prove impractical or extremely expensive.

Bioinformatics has emerged as providing a new perspective for the treatment of

genetically inherited diseases.  The central paradigm of bioinformatics states that

genetic information can be used to predict molecular structure of proteins, and

the function of these proteins can then be determined, providing a cause for

symptoms of a disease.  If the structure and function of every protein encoded by

DNA were known, the underlying causes of symptoms could be easily

pinpointed.  Elucidating these structures, however, is a process that could

occupy scientists for hundreds of years.  As a result, much research has been and



continues to be done regarding the prediction of secondary structures of proteins

based upon determined amino acid sequences.

X-ray crystallography has been the traditional method for determining the

structure of a protein.  Protein samples are crystallized, and a fine beam of x-rays

is targeted at them.  The x-ray diffraction detected is then used to generate a

model of the electron density of the protein.  Several disadvantages, however,

exist to using x-ray crystallography.  First of all, the crystallization of proteins is

usually a difficult and time consuming process that requires a great deal of skill.

Secondly, x-ray diffraction provides a static model of protein structure, with

atoms and molecules mapped in fixed-space.  Although this representation is

useful, proteins do not usually acquire a fixed structure and instead are

continuously bending and shifting, characteristics that may be crucial to the

function of the protein.  Thirdly, the time needed to crystallize and x-ray, much

less identify, every single protein that is encoded by the genetic sequence could

span centuries of work.  As a result, scientists would prefer to be able to

accurately predict structure rather than actually determining it.

The prediction of protein structure from the amino acid sequence is a

work-in-progress.  Scientists are cataloguing and using the known structures of

thousands of proteins to help them through this process.  The Protein Data Bank,

or PDB, is maintained through Brookhaven National Laboratory.  As of March 3,

1999, the PDB holds 9419 coordinate entries, of which 8751 are proteins, 656 are

nucleic acids, and 12 are carbohydrates (Protein Data Bank).  These structures are

classified into groups, the most general of which being the Class (α, β, α/β, and

α+β); major structural similarities place proteins in the same Fold category; some



degree of sequence similarity implies a probable common ancestry, and puts

proteins in the same Superfamily; and greater than 25 percent sequence

similarity demonstrates a clear evolutionary ancestry, which places proteins in

the same Family (Brutlag lecture, 2/1).  The classification of proteins into such

groups aids in understanding and attempting to predict protein structures by

allowing easy observation of and comparisons between patterns in amino acid

sequences.

The Asilomar conferences of 1994 and 1996 discussed four approaches to

secondary structure prediction.  The first is homology modeling.  Two proteins

are generally agreed to have the same structure if their sequences are 25-30

percent homologous (Brutlag lecture, 2/1).  This approach utilizes knowledge of

a closely related protein to predict the structure of a protein in question.  If the

sequences and/or structures of no closely related proteins are known, however,

ab initio prediction appeals as a second approach.  Ab initio methods attempt to

predict secondary structure through knowledge of only the amino acid sequence

of the protein in question (Altman lecture).  One ab initio method that has been

worked on is determining the lowest energy configuration possible, determined

through a hidden Markov models and computer modeling, using the given

sequence of amino acids.  Such an approach, however, has not proven successful

beyond predicting the secondary structure of small proteins because naturally

occurring proteins often do not exist in their minimum energy configuration for

reasons that may or may not be known (Brutlag lecture, 2/4).  For proteins that

have some (< 25 percent) sequence homology with known structures, a third

approach to structure prediction is taken.  Fold recognition utilizes knowledge of

existing structures to hypothesize whether or not new sequences could acquire



such structures (Altman lecture).  Predicting how two proteins fit together is

done by the fourth approach, protein docking.  The geometry of the physical

association between two proteins is predicted by studying the surface-to-surface

interactions to determine the best way in which they would fit together.

Homology and ab initio are the two current methods that will be concentrated on

as efforts towards protein structure prediction.

Most efforts at predicting secondary structure concentrate on predicting

the state of an amino acid in the center of a local window of residues (Schmidler).

Because the twenty amino acids do not occur in equal distribution in proteins,

the beginnings of structure prediction attempted to utilize the frequency of an

amino acid’s occurrence in different conformations.  For example, proteins

usually have low levels of methionine and tryptophan and higher levels of

leucine and serine (Stryer).  In particular, however, the amino acids do not have

the same proportions in particular regions of a protein forms a secondary

structure as they do in the protein overall.  The side chains on the amino acids

can either promote or hinder secondary structure formation.  Proline disrupts α-

helical structure because it has no hydrogen on its N-terminus, prohibiting it

from participating in hydrogen-bonding.  As a result, it is often found near the

ends of helical regions where turns in the chain are located; glycine and

asparagine also have a propensity for forming such turns.  Amino acids with

large, bulky R groups, such as isoleucine, would tend to destabilize an α-helix,

thus preventing helix formation.  Depending upon the pH of the surrounding

solution, charges on side chains can prevent helix formation.  For example, at

physiological pH, a polyarginine molecule would not become helical because its



R group would be positively charged.  Bulky, charged side chains on amino acids

also hinder the formation of β-pleated sheets.  The

hydrophobicity/hydrophilicity of side chains must be taken into account in all

cases, as these forces are the strongest in guiding structural

conformation.

Attempting to predict secondary structure on a

residue-by-residue basis, as common sense would dictate, is

not the best approach.  Indeed, the interactions between amino acids between

immediate neighbors, and possible interactions between amino acids that are

located at some distance away from each other, should be taken into account in

order to provide a more honest method of prediction.  For example, in an α-helix,

the C=O group of residue n is hydrogen bonded to the N-H group of residue (n +

4).  β-sheets have hydrogen bonds between C=O and N-H groups in distant

regions of the same chain of amino acids, or even on different strands of

residues.  Consideration of the environment of the protein can also provide great

insight into the possible structure of the protein.  For instance, a repetitive nature

in the degree of hydrophobicity of amino acids can indicate a resulting

secondary structure in which the hydrophobic side-chains face one side of the

molecule while the hydrophilic side-chains face the other, forming an ‘exterior’

and an ‘interior’ to the region of the protein.  An example is shown in the

amphiphilic α-helix above, where all the hydrophobic residues (shown in ball-

and-stick form) occupy one side of the helix.  As a result, taking into account

possible non-local interactions between, as well as periodicity among, residues is

a must when attempting to predict secondary structure.



The most successful model yet constructed for secondary structure

prediction is one proposed by Frishman and Argos (1997).  At a level of 75

percent accuracy, the model relies on a local pairwise alignment of the sequence

with each related sequence it is being compared to rather than initially

conducting a multiple alignment, in addition to taking into account regional and

nonlocal interactions between residues.  Accuracy is reported on a per-residue-

basis.  The multiple alignment procedure assumes an evolutionary relationship

between homologous sequences of different proteins.

The most accurate ab initio prediction of a sequence without known

structural homologues was achieved by Salamov and Solovyev (1997) by using a

variant on the nearest-neighbor approach.  The nearest neighbor method starts

with a region of residues and searches the Protein Data Bank for the sequence’s

‘nearest neighbors,’ determining the structure of the sequence as the

conformation that most of the nearest neighbors take.  Salamov and Solovyev

modify this procedure by allowing gaps in the alignment process, and also by

combining sequence scores with environmental scores.  The environmental score

is determined by the area of the residue buried in the protein and inaccessible to

the solvent in which the protein resides, the fraction of side-chain area that is

covered by polar atoms (O and N), and the local secondary structure (Bowie et

al.).  By combining these techniques, a 72 percent accuracy in structural

prediction was achieved.

Another probabilistic ab initio approach to structure prediction is

utilization of the hidden Markov model.  The hidden Markov model (HMM)

attempts to statistically represent stationary signals.  It has been most greatly

exploited in speech recognition projects, but its significance has carried over into



hand-written script recognition and, more relevantly, the modeling of protein

chains.  The idea of using a HMM to predict secondary structure was first

introduced by K. Asai et. al. in 1993.  A programmed HMM can ‘learn’ protein

secondary structures such as the α-helix, β-sheet, and the turn, and these HMMs

can then, in turn, be applied to new sequences whose structures are unknown.

The HMM gives an output of probabilities for the secondary structure, which are

used to predict the secondary structures of the sequences.  The model is used to

predict a structure using only the sequence in question, rather than using

homologous sequences, as well.

New approaches to protein modeling are continually breaching the

expected limits to the accuracy of secondary structure prediction.  One possible

reason for this is that any predictive method is immediately outdated due to the

rate at which new structures are being entered into the Protein Data Bank.  The

PDB is updated weekly, and the last update resulted in 69 new entries.  If as few

as 50 structures per week were entered, 2600 structures would have been added

in the past year.  Schmidler et al. developed a technique using HMMs that,

though it does not yield the highest level of accuracy, has advantages over the

existing models.  The model easily incorporates the ever-expanding information

on protein structure and is more flexible than other HMMs in allowing use of

information that is already available.  For instance, the N-terminus of a helical

cap shows strong signals for the first and second positions; proline and alanine

most often occupy position N1, while glutamic acid is most frequently found in

position N2.  Such positions which are most important for predictive purposes

can be highlighted in the model, which allows the most significant differences

from sequences in the database to be focused on.  The incorporation of this



knowledge, however, would be difficult to execute in the standard window-

based approach.  Intra-segment residue correlations can also be deduced in the

Schmidler et al. models.  In addition, these models calculate the exact degree of

uncertainty at each position within the segment, rather than the uncertainty of

the secondary structure of the region as a whole.  As a result, the models can be

easily modified to be conditional upon specific positions or segments taking

known conformations.  For these reasons, though the approach stands at 68.8

percent accuracy while the best method using single sequences stands at 71

percent (Salamov and Solovyev), the possibility of the model achieving higher

rates of accuracy in prediction as more information is gathered and applied is not

ruled out.  In addition, application of the model to multiple sequence alignments,

as well as consideration of non-local interactions, could produce even more

accurate performance.

While the accuracy of protein structure prediction is worked on, the actual

structures of proteins continue to be derived.  At a 1998 meeting sponsored by

the National Institute of General Medical Sciences (NIGMS) at the National

Institutes of Health, scientists agreed that a database of 3,000-5,000 new protein

structures must be determined experimentally in order to discover all protein

folding motifs (National Institutes of Health).   Since the database was started in

1973 approximately 7000 structures had been submitted and released at the end

of 1997 (Protein Data Bank), compared to the approximately 9000 protein

structures that exist in the database today, a little over a year later.  The pace at

which such information is being acquired continues to provide insight into the

classification of protein motifs.  The determination of as many types of protein



folds as possibly will invariably expedite the currently slow but steady increase

in the accuracy of secondary structure prediction models.

Much progress has been made since attempts to predict secondary

structure began.  Predictive methods have increased almost 20 percent from the

original 56 percent accuracy rate reported by pioneers in the field (Garnier et al.) .

Though limits to accuracy without resorting to looking at thermodynamic

perspectives may exist, many present models may be significantly improved

upon.  As a result, the limits on the accuracy of probabilistic approaches to

protein structure prediction may not yet have been reached. The eventual

production and application of a highly accurate model would provide an

extremely beneficial perspective on the treatment of inherited diseases.  The

development of such a model would begin to solve the puzzle of how an amino

acid sequence inherently holds the necessary information to bend, twist, and fold

into the proper conformation in order to function correctly- a problem that has

been plaguing scientists since the genetic code was cracked more than 30 years

ago.  The capability to accurately predict secondary structure would then allow

scientists to focus on tertiary and quaternary structure, which would culminate

as the ability to map a direct link from amino acid sequence to full structure,

from a linear map to a phenotype, of a protein.
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